Saturday, September 7, 2013

The number e mathematical constant is the base of the natural logarithm.

Euler's number e


The number e is an important mathematical constant that is the base of the natural logarithm. It is approximately equal to 2.71828,[and is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series[2]
e = 1 + \frac{1}{1} + \frac{1}{1\cdot 2} + \frac{1}{1\cdot 2\cdot 3} + \frac{1}{1\cdot 2\cdot 3\cdot 4}+\cdots

The constant can be defined in many ways; for example, e is the unique real number such that the value of the derivative (slope of the tangent line) of the function f(x) = ex at the point x = 0 is equal to 1.[3] The function ex so defined is called the exponential function, and its inverse is the natural logarithm, or logarithm to base e. The natural logarithm of a positive number k can also be defined directly as the area under the curve y = 1/x between x = 1 and x = k, in which case, e is the number whose natural logarithm is 1. There are also more alternative characterizations.

Alternative characterizations


The area between the x-axis and the graph y = 1/x, between x = 1 and x = e is 1.
Other characterizations of e are also possible: one is as the limit of a sequence, another is as the sum of an infinite series, and still others rely on integral calculus. So far, the following two (equivalent) properties have been introduced:
1. The number e is the unique positive real number such that
\frac{d}{dt}e^t = e^t.
2. The number e is the unique positive real number such that
\frac{d}{dt} \log_e t = \frac{1}{t}.
The following three characterizations can be proven equivalent:
3. The number e is the limit
e = \lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^n
Similarly:
e = \lim_{x\to 0} \left( 1 + x \right)^{\frac{1}{x}}
4. The number e is the sum of the infinite series
e = \sum_{n = 0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots
where n! is the factorial of n.

5. The number e is the unique positive real number such that
\int_1^e \frac{1}{t} \, dt = 1.

No comments:

Post a Comment