Rotation matrices provide a simple algebraic description of such rotations, and are used extensively for computations in geometry, physics, and computer graphics. In two-dimensional space, a rotation can be simply described by an angle θ of rotation, but it can also be represented by the four entries of a rotation matrix with two rows and two columns. In three-dimensional space, every rotation can be interpreted as a rotation by a given angle about a single fixed axis of rotation (see Euler's rotation theorem), and hence it can be simply described by an angle and a vector with three entries. However, it can also be represented by the nine entries of a rotation matrix with three rows and three columns. The notion of rotation is not commonly used in dimensions higher than 3; there is a notion of a rotational displacement, which can be represented by a matrix, but not associated single axis or angle.
Rotation matrices are square matrices, with real entries. More specifically they can be characterized as orthogonal matrices with determinant 1:
- .